48 research outputs found

    Thermal comfort models for indoor spaces and vehicles—Current capabilities and future perspectives

    No full text
    International audienceThroughout this paper, we reviewed the most popular thermal comfort models and methods of assessing thermal comfort in buildings and vehicular spaces. Most of them are limited to specific steady state, thermally homogenous environments and only a few of them address human responses to both non-uniform and transient conditions with a detailed thermo-regulation model. Some of them are defined by a series of international standards which stayed unchanged for more than a decade. The article proposes a global approach, starting from the physiological reaction of the body in thermal stress conditions and ending with the model implementation. The physiological bases of thermal comfort are presented, followed by the main thermal comfort models and standards and finishing with the current methods of assessing thermal comfort in practice. Within the last part we will focus mainly on thermal manikin experimental studies, and on CFD (computational fluid dynamics) numerical approach, as in our opinion these methods will be mostly considered for future development in this field of researc

    The stability of the radiative regime in Bucharest during 2017-2018

    Get PDF
    The paper presents an analysis of the solar irradiation and the stability of the solar radiative regime, available for Bucharest and the southern area of Romania. The study is based on meteorological data measured at 3.6 seconds, on several consecutive days of each season, in the years 2017 and 2018. Data acquisition was performed at Technical University of Civil Engineering Bucharest. The daily mean values for sunshine number and sunshine stability number are computed and analysed. The analyses carried out in this research are useful for applications of solar energy and conversion to thermal energy in hot air solar collectors to estimate the temperature variation at the collector air outlet as well as for photovoltaic panels to estimate the resulting electrical energy

    Experimental and numerical study of the air distribution inside a car cabin

    Get PDF
    The main declared goal of all car manufacturers is to ensure high comfort inside the cabin and to reduce the fossil fuel. It is well-known that the time spent by the people indoor has raised in the last decade. The distance between the home and the workplace increased due to diversity of activities and hence job diversity. The thermal comfort during the travel must to be ensured to reduce the occupant’s thermal stress. The present study is investigating a comparison between the measured data and the numerical simulation results in the case when the ventilation system is functioning. It was evaluated the effect of the boundary conditions air flow and air velocity distribution in a passenger compartment in two cases: first is the general used constant inlet flow and the second is a new approach of importing the measured data obtained during the experimental measurement session as a boundary condition.CFD simulations were made taking as input the measured data obtained during experimental session. We have observed differences between initial simulation results and the measured data, therefore, for more accurate results, a new approach is needed, to impose as boundary conditions the measured data

    Indoor air quality and health in schools: a critical review for developing the roadmap for the future school environment

    Get PDF
    Several research studies have ranked indoor pollution among the top environmental risks to public health in recent years. Good indoor air quality is an essential component of a healthy indoor environment and significantly affects human health and well-being. Poor air quality in such environments may cause respiratory disease for millions of pupils around the globe and, in the current pandemic-dominated era, require ever more urgent actions to tackle the burden of its impacts. The poor indoor quality in such environments could result from poor management, operation, maintenance, and cleaning. Pupils are a different segment of the population from adults in many ways, and they are more exposed to the poor indoor environment: They breathe in more air per unit weight and are more sensitive to heat/cold and moisture. Thus, their vulnerability is higher than adults, and poor conditions may affect proper development. However, a healthy learning environment can reduce the absence rate, improves test scores, and enhances pupil/teacher learning/teaching productivity. In this article, we analyzed recent literature on indoor air quality and health in schools, with the primary focus on ventilation, thermal comfort, productivity, and exposure risk. This study conducts a comprehensive review to summarizes the existing knowledge to highlight the latest research and solutions and proposes a roadmap for the future school environment. In conclusion, we summarize the critical limitations of the existing studies, reveal insights for future research directions, and propose a roadmap for further improvements in school air quality. More parameters and specific data should be obtained from in-site measurements to get a more in-depth understanding at contaminant characteristics. Meanwhile, site-specific strategies for different school locations, such as proximity to transportation routes and industrial areas, should be developed to suit the characteristics of schools in different regions. The socio-economic consequences of health and performance effects on children in classrooms should be considered. There is a great need for more comprehensive studies with larger sample sizes to study on environmental health exposure, student performance, and indoor satisfaction. More complex mitigation measures should be evaluated by considering energy efficiency, IAQ and health effects

    Aerogel, a high performance material for thermal insulation - A brief overview of the building applications

    No full text
    In this paper data regarding the utilization of aerogel as a promising material for thermal insulation of the residential and commercial buildings are presented. Also, research work and developments in synthesis, properties and characterization of silica aerogels will be addressed. Aerogel is a synthetic porous ultralight material derived from a gel in which the liquid component of the gel has been replaced with a gas. The result is a solid with extremely low density and low thermal conductivity. Sol-gel is the most used method of preparation. Aerogel melts at 1200ºC and the thermal conductivity is almost 0. Is a solid material with the smallest density because contains about 99.8% air. This material has almost unlimited potential, believing that they might find application in most human activities and areas. Aerogel insulation is a good choice because nearly neutralizes all three methods of heat transfer: convection, conduction and radiation. The resistance to convective transfer is given by the fact that air does not circulate in the material structure. The resistance to thermal transfer by conduction is given by the majority of gaseous components. If using a carbon based gel, a high resistance to radiation transfer is obtained. Therefore, the most used aerogel for thermal insulation is the silica aerogel with carbon as nanostructured material. The high price makes it currently inaccessible and less used material. But, inevitably, the aerogel will quickly become one of the most attractive materials in the future

    A state of the art regarding urban air quality prediction models

    No full text
    Urban pollution represents an increasing risk to residents of urban regions, particularly in large, over-industrialized cities knowing that the traffic is responsible for more than 25% of air gaseous pollutants and dust particles. Air quality modelling plays an important role in addressing air pollution control and management approaches by providing guidelines for better and more efficient air quality forecasting, along with smart monitoring sensor networks. The advances in technology regarding simulations, forecasting and monitoring are part of the new smart cities which offers a healthy environment for their occupants

    Numerical Simulation Investigation of a Double Skin Transpired Solar Air Collector

    No full text
    Transpired solar collectors (TSC) are one of the most popular solar thermal technologies for building façades. TSC use solar energy to heat the absorber surface, which transmits thermal energy to the ambient air. A variant of TSC, namely, a double skin transpired solar collector (DSTSC), has been analyzed in this paper, thus providing guide values and a technical point of view for engineers, architects, and constructors when designing such transpired solar collectors. Three important parameters were addressed in this study through numerical simulation: the influence of a separation plate introduced in a TSC, turning it into a DSTSC; the air layer thickness influence on the performance of the collector; and the influence of the used absorber materials for the separation plate material. Greater heat exchange efficiency was noticed for the DSTSC at every imposed airflow rate compared with the TSC. Regarding the thickness of the collector, the efficiency gradually increased when increasing the solar collector thickness until it reached a value of 20 cm, though not varying significantly at a thickness of 30 cm

    Numerical Simulation Investigation of a Double Skin Transpired Solar Air Collector

    No full text
    Transpired solar collectors (TSC) are one of the most popular solar thermal technologies for building façades. TSC use solar energy to heat the absorber surface, which transmits thermal energy to the ambient air. A variant of TSC, namely, a double skin transpired solar collector (DSTSC), has been analyzed in this paper, thus providing guide values and a technical point of view for engineers, architects, and constructors when designing such transpired solar collectors. Three important parameters were addressed in this study through numerical simulation: the influence of a separation plate introduced in a TSC, turning it into a DSTSC; the air layer thickness influence on the performance of the collector; and the influence of the used absorber materials for the separation plate material. Greater heat exchange efficiency was noticed for the DSTSC at every imposed airflow rate compared with the TSC. Regarding the thickness of the collector, the efficiency gradually increased when increasing the solar collector thickness until it reached a value of 20 cm, though not varying significantly at a thickness of 30 cm

    Assessment of virtual thermal manikins for thermal comfort numerical studies. Verification and validation

    No full text
    This study is a part of a larger experimental and numerical campaign intended to evaluate the influence of the turbulence intensity at the inlet of the terminal air distribution systems on the local draft sensation and thermal discomfort of ventilation users. In this paper we present preliminary results of CFD simulations using a realistic model of human body along with an experimental validation. The model is further used in a piston distribution scheme to evaluate the influence of turbulence intensity on the comfort indicators. The recorded velocity, turbulence and temperature fields allowed us to estimate the distributions of DR, PPD and PMV indexes. For the investigated case, the results indicated a direct correlation

    Preliminary numerical studies conducted for the numerical model of a real transpired solar collector with integrated phase changing materials

    No full text
    Solar energy has a great potential to reduce the worldwide energy consumptions thus mitigating the impact of building systems on the global warming. Transpired solar collectors (TSC) are cost-effective solutions and phase changing materials (PCM) implemented within them could store the energy during the periods when solar radiation is available. The current paper is part of comprehensive numerical studies and analyses the mesh independency studies conducted in ANSYS Fluent with SST k-Ω viscous model and the numerical model preliminary results (3.3ºC rise in temperature). The results emphasise that the 5 million cells mesh is the feasible option for the studied case
    corecore